Dienstag, 4. Juni 2024

Das Kartenspiel "2 oder 4"

Ich möchte heute mein neues Kartenspiel "2 oder 4" vorstellen. Es ist auf MeinSpiel erschienen als Print-On-Demand und wird so gespielt: Auf je zwei Karten gibt es genau 2 oder 4 gemeinsame Bilder. Das Ziel des Spieles ist es schnell so viele Karten wie möglich zu gewinnen, indem man die 2 oder 4 Bilder findet und benennt. Wer das Spiel zuerst einmal selbst ausprobieren möchte und gerne bastelt, der kann hier das Spiel als pdf herunterladen und selbst drucken und ausschneiden. Es eignet sich gut als Partyspiel oder als Familienspiel. Dass es bei 36 Karten und genau zwei Karten je genau je 2 oder genau je 4 Bilder gibt, die gemeinsam sind, liegt an der Existenz eines mathematischen Objektes.

Montag, 4. März 2024

The abc conjecture and positive definite kernel on the natural numbers with inductive Cholesky decomposition.

This is a transcription of the following MathOverflow question, found here. One formulation of the abc-conjecture is: \[\forall a,b \in \mathbb{N}: \frac{a+b}{\gcd(a,b)} < \operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2 \] Let us define: \[K(a,b) := \frac{2(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \] I have checked in Sagemath up to \(n=100\) that the matrix \[(K(i,j))_{1 \le i,j \le n} \text{ is positive definite }\] and up to \(1\le a,b \le 100\) that : \[K(a,b)\le 1\] In the Encyclopedia of Distances the word "similarity" is described as: A similarity \(s:X\times X \rightarrow \mathbb{R}\) is defined in the Encyclopedia of Distances as:
  1. \(s(x,y) \ge 0 \forall x,y \in X\)
  2. \(s(x,y) = s(y,x) \forall x,y \in X\)
  3. \(s(x,y) \le s(x,x) \forall x,x \in X\)
  4. \(s(x,y) = s(x,x) \iff x=y\)
So one possible formulation of the empirical observation above might be: \[K \text{ is a pos. def. kernel and a sim. function with } K(a,a)=1\] From this formulation the abc conjecture in the variant above follows, because: \[K(a,b) \le K(a,a)=1 \rightarrow \frac{(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \le \frac{1}{2} < 1 \] Since in the definition of the similarity function, some of the properties are easy to prove for \(K\) such as 1. and 2. and from 3. follows abc, I am asking if it is possible to prove \(\require{enclose}\enclose{horizontalstrike}{\text{ property 4. and / or}}\) that \(K\) is positive definite function? Thanks for your help.
Edit: I think that \(4.\) can be proved by considering that if \(K(x,y)=1\) and assuming there exists a prime \(p\) which divides \(x\) but not \(y\), leads to a contradiction.
Second edit: The abc conjecture (in the version above) would follow, if one could prove that the function \[K(a,b) := \frac{2(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \] is positive definite over the natural numbers.
Proof: If \(K\) is a positive definite function over the natural numbers, then by the Moore-Aronszajn theorem , there exists a Hilbert space \(H\) and a feature mapping \(\phi: \mathbb{N} \rightarrow H\) such that: \[K(a,b) = \left < \phi(a),\phi(b) \right >_{H}\] But by Cauchy-Schwarz inequality we get: \[K(a,b) = |K(a,b)| = |\left < \phi(a), \phi(b) \right >_{H}|\] \[\le |\phi(a)||\phi(b)| = \sqrt{K(a,a)K(b,b)} = \sqrt{1 \cdot 1} = 1\] But then we get by division of \(2\) and application of the last inequality: \[\frac{(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \le \frac{1}{2} < 1 \] hence it would follow that: \[\forall a,b \in \mathbb{N}: \frac{a+b}{\gcd(a,b)} < \operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2 \] Modified question: Is there a way to speed up the computations to try and test if the Gram matrix for \(n=1,\cdots,10000 \) is positive definite? Here is my code so far, but it is rather slow:
# inductive cholesky decomposition
def rad(n):
    return prod(prime_divisors(n))


def kk(a,b):
    return (2*(a+b)*a**1*b**1/gcd(a,b))*1/rad(a*b*(a+b)/gcd(a,b)**3)**2

def notPositiveDefinite(a,b):
    return rad(a*b/gcd(a,b))

#kk = notPositiveDefinite

def grammat(kk,n):
    return matrix([[kk(a,b) for a in range(1,n+1)] for b in range(1,n+1)],ring=QQ)


PHI = dict([])

def phi(n,useN=False):
    if n in PHI.keys():
        return PHI[n]
    
    if n==1:
        if not useN:
            x = vector([sqrt(kk(1,1))])
        else:
            x = vector([sqrt(kk(1,1)+0.0)])
        PHI[n] = x
        return x
    else:
        w = CC(n-1)**(-1)*vv(n-1)
        lw = list(w)
        if not useN:
            lw.append(sqrt(kk(n,n)-w.norm()**2))
        else:
            lw.append(sqrt(kk(n,n)-w.norm().n()**2).n())
        x = vector(lw)
        PHI[n]= x
        return x

def vv(n):
    return vector([kk(i,n+1) for i in range(1,n+1)])
    

CCDict = dict([])    

def CC(n):
    if n in CCDict.keys():
        return matrix(CCDict[n])
    mm = []
    for i in range(1,n+1):
        vi = list(phi(i))
        if len(vi) < n:
            vi.extend((n-i)*[0])
        mm.append(vi)
    M= matrix(mm)
    CCDict[n] = mm
    return M
    
    

for n in range(1,200):
    print(n,all(x in RR for x in phi(n,useN=True)))
    #print(grammat(kk,n).rational_form())
```
Comment on code:
It is based on inductive Cholesky decomposition as described below and keeps track in a dictionary if the \(\phi(n)\) or \(C_n\) have already been computed. It uses float approximation for greater speed and in the last step we check if each component of the vector \(\phi(n)\) is a real number. If it is for all \(1 \le k \le n\) then we conclude that the Gram matrix of \(n\) is positive definite. If it is not, then at least the Gram matrix for \(n\) is not positive definite:
Inductive Cholesky decomposition to find an embedding \(\phi(n)\) for each number \(n\):
Equation 1): \[\phi(n+1) = \left(\begin{array}{r} {C_{n}^{-1} v_n} \\ \sqrt{k(n+1,n+1)-{\left| {C_{n}^{-1} v_n} \right|}^{2} } \end{array}\right)\] Equation 2): \[v_n = \left(\begin{array}{r} k(1,n+1) \\ k(2,n+1) \\ \cdots\\ k(n,n+1)\\ \end{array}\right)\] Equation 3): \[C_n = \left(\begin{array}{r} \phi(1)^T \\ \phi(2)^T \\ \cdots\\ \phi(n)^T\\ \end{array}\right)\] Equation 4): \[\phi(1) := \sqrt{k(1,1)} e_1\] If we assume that the function \(k\) is positive definite, then this inductive method, should give us the vectors \(\phi(a),\phi(b)\) such that under the normal inner product we have: \[k(a,b) = \left < \phi(a), \phi(b) \right > \]. Edit (11.03.2024): This conjecture about the positive semidefiniteness of \(K\) is wrong as the determinant of \(G_{192}\) is < \(0\)

Samstag, 2. März 2024

Application of Ehrhart polynomials for counting of numbers and lattices for natural numbers.

This is a transcription of the MO question written here: It is known that \(\log(p)\) is independent as a vector over the rational numbers where \(p\) is a prime. We have \(\log(ab) = \log(a)+\log(b)\) and \(\log(n) = \sum_{p |n}v_p(n) \log(p)\). We define \(\psi(n) := \sum_{p |n}v_p(n) e_p\) where \(e_p\) is the \(p\)-th standard basis vector of the Hilbert space of sequences. for \(q = a/b \in \mathbb{Q}_{>0}\) we define: \[\psi(a/b) := \psi(a/\gcd(a,b))-\psi(b/\gcd(a,b))\]. We have for \(n \in \mathbb{N}\): \[\|\psi(n)\|^2 = \sum_{p|n} v_p(n)^2 \text{ is a natural number}\] Furthermore the function \[K(a,b) = \left < \psi(a),\psi(b)\right > = \sum_{p|\gcd(a,b)} v_p(a)v_p(b)\] is a positive definite kernel on the natural numbers. Let us define the \(\infty\)-dimensional lattice \(\Gamma\) as: \(\Gamma:= \{\psi(q)| q \in \mathbb{Q}_{>0}, \|\psi(q)\|^2 \equiv 0 \mod(2)\}\) and let us also define: \[\eta(n) := (-1)^{\|\psi(n)\|^2}= \prod_{p|n}(-1)^{v_p(n)^2}\] For \(\psi(a),\psi(b) \in \Gamma\) we have: \[\|\psi(ab)\|^2 = \|\psi(a)+\psi(b)\|^2 = \|\psi(a)\|^2+\|\psi(b)\|^2+2K(a,b) \equiv 0+0+0 \equiv 0 \mod(2)\] Therefore \(\psi(a)+\psi(b) \in \Gamma\) and \(\psi(1) \in \Gamma\). The lattice shares some properties with the Leech-lattice and the E8 lattice: 1. It is unimodular in the sense that: For a finite set of primes, the gram matrix \((K(p,q))_{p,q \text{ is prime}}\) has \(\det=1\). 2. It is even: \(\forall x \in \Gamma: |x|^2 \equiv 0 \mod(2)\) 3. For all nonzero vectors in the lattice the squared norm is at least \(2\). My questions are these: 1) Probably an easy question: \[\eta(mn) = \eta(m) \eta(n) \forall m,n\in \mathbb{N}\] 2) Does it satisfy a Riemann-Hypothesis type of random variable equality: \[\forall \epsilon > 0 : \lim_{N\rightarrow \infty} \frac{1}{N^{1/2+\epsilon}}\sum_{n=1}^N \eta(n) = 0\] 3) Is there a relationship to the Riemann Hypothesis and this lattice? Here is some Sagemath code for experiments. And here is some picture concerning the 2. question:
**Edit**: Let \(\lambda(n)=(-1)^{\Omega(n)}\) be the Liouville function. Then because \(v_p(n)^2\equiv v_p(n) \mod(2)\), we have indeed: \[\eta(n)= \lambda(n)\] This answers the first question since it is known that \(\lambda\) is multiplicative. This also answers the second and third question. Modified question: Is this lattice known in literature? Thanks for your help. ------------------------------------------------------------------------------------------------- A maybe useful point of view, is to use the Ehrhart polynomial of a polytope, namely the simplex, to count the numbers as points in a simplex: Let \(Q_N:=\) Polytope of \((\{\psi(p)|1\le p \le N, p \text{ prime }\})\) Then the polytope generated by the primes is the simplex, and it is known ( "Computing the continuous discretely" Matthias Beck, Sinai Robins, Second edition, p.31 ff) that the Ehrhart polynomial is given by: \[L(Q_N,t) = \operatorname{binomial}(d+t,d)\] where \(d= \pi(N)\) is the dimension of the simplex, and it is equal to the number of primes \(\le N\), which is denoted by \(\pi(N)\). Let \(\hat{\pi}(n):=\{p \text{ prime}: p|n \}\) and let \(p_n:=n\)-th prime. Since \(L(Q_N,t)\) counts the points \(\psi(n)=(x_1,\cdots,x_d)\) in the dilated polytope \(t Q_N\) and those points have coordinates \(\ge 0\) with \(x_1+\cdots+x_d \le t\), we conclude that, by observing that the sum of the coordinates correspond to \(\Omega(n) := \sum_{p|n} v_p(n)\): \[L(Q_N,t) = |\{\psi(n) : \Omega(n) \le t , \hat{\pi}(n) \subset \hat{\pi}(N!), 1 \le n \le p_{\pi(N)}^t\}|\] The condition \(\hat{\pi}(n) \subset \hat{\pi}(N!)\) is for making sure we look at those numbers which have only prime divisors \(\le N\). We also observe that: \[L(Q_N,t)-L(Q_N,t-1) = |\{ n : 1 \le n \le p_d^t, \Omega(n)=t, \hat{\pi}(n) \subset \hat{\pi}(N!) \}| = |A_{N,t}|\] where I have defined: \[A_{N,t} = \{ n : 1 \le n \le p_d^t, \Omega(n)=t, \hat{\pi}(n) \subset \hat{\pi}(N!) \}\] We can now define and try to evaluate the following sum: \[F(N,t):= \sum_{k=0}^t \sum_{n \in A_{N,k}} \lambda(n)\] \[=\sum_{k=0}^t (-1)^k ( L(Q_N,k)-L(Q_N,k-1) )\] \[=\sum_{k=0}^t (-1)^k ( \operatorname{binomial}(d+k,d)-\operatorname{binomial}(d+k-1,d) )\] which according to Wolfram Alpha is equal to: \[=((-1)^t \operatorname{binomial}(d+t+1,d) F_{2, 1}(1,d+t+2;t+2;-1)+2^{-d-1})-2^{-d-1}(2^{d+1}(-1)^t \operatorname{binomial}(d+t,d)F_{2,1}(1,d+t+1;t+1;-1))\] \[=((-1)^t \operatorname{binomial}(\pi(N)+t+1,\pi(N)) F_{2,1}(1,\pi(N)+t+2;t+2;-1)+2^{-\pi(N)-1})-2^{-\pi(N)-1}(2^{\pi(N)+1}(-1)^t \operatorname{binomial}(\pi(N)+t,\pi(N))F_{2,1}(1,\pi(N)+t+1;t+1;-1))\] where \(F_{2,1}(a,b;c;z)\) is the hypergeometric function. I must admit that the formula is not really "nice" but I think it should be useful, because using the RHS of the last equality with \(d\) could maybe be extended to other values for \(d,t\) other than the natural numbers. I can also not see, how to relate the sum \(F(N,t)\) to the Liouville sum: \[\sum_{n=1}^N \lambda(n)\] The naive idea is that in the limit \(N\rightarrow \infty, t \rightarrow \infty\), the two sets: \[\mathbb{N}:= \lim_{N\rightarrow \infty}\{1,\cdots,N\} \text{ and } \lim_{N,t\rightarrow \infty} A_{N,t} \] should be intuitively equal. There is also an equivalent formulation of the Riemann Hypothesis with the points on a different polytope, but while it uses the Ehrhardt polynomials, which in this case are very complicated at \(t=1\) I can not see how to derive an analytic formula in this case. Here you can find some sanity check in SageMath. Let \(B_{N,t} = \{n : \Omega(n) \le t , \hat{\pi}(n) \subset \hat{\pi}(N!), 1 \le n \le p_{\pi(N)}^t\}\), so that \[\operatorname{binomial}(d+t,d) = L(Q_N,t) = |B_{N,t}|\] The arguments above show that: \[\sum_{n \in B_{N,t}} \lambda(n) = F(N,t) = \] \[=((-1)^t \operatorname{binomial}(d+t+1,d) F_{2,1}(1,d+t+2;t+2;-1)+2^{-d-1})-2^{-d-1}(2^{d+1}(-1)^t \operatorname{binomial}(d+t,d)F_{2,1}(1,d+t+1;t+1;-1))\] hence dividing by the number of points under which the sum runs, we get: \[\frac{1}{|B_{N,t}|} \sum_{n \in B_{N,t}} \lambda(n) = \frac{1}{|B_{N,t}|} F(N,t) = \] \[=(-1)^t \frac{d}{t+1}F_{2,1}(1,d+t+2;t+2;-1)+(-1)^t F_{2,1}(1,d+t+2;t+2;-1)+\frac{1}{2^{d+1} \operatorname{binomial}(d+t,d)}+(-1)^{t+1}F_{2,1}(1,d+t+1;t+1;-1)\] where \(d:=\pi(N)\). Notice the similarity to the prime number theorem: We have in both cases sets \(C_N\) such that: \[\lim_{N\rightarrow \infty} \frac{1}{|C_N|} \sum_{n \in C_N} \lambda(n) = 0\] The case \(C_N := \{1,\cdots,N\}\) corresponds by Landau equivalently to the prime number theorem. We observe that: \[\lim_{N \rightarrow \infty} B_{N,t} = \{n \in \mathbb{N} | \Omega(n) \le t \} =: B_{\infty,t}\] and that \[\lim_{t \rightarrow \infty}(\lim_{N\rightarrow \infty} B_{N,t} ) = \lim_{t \rightarrow \infty} B_{\infty,t} = \lim_{t \rightarrow \infty} \{n \in \mathbb{N} | \Omega(n) \le t \} = \mathbb{N}\] Similarly: \[\lim_{N \rightarrow \infty}(\lim_{t\rightarrow \infty} B_{N,t} ) = \lim_{N \rightarrow \infty} B_{N,\infty} = \lim_{N \rightarrow \infty} \{n \in \mathbb{N} | \hat{\pi}(n) \subset \hat{\pi}(N!)\} = \mathbb{N}\] Hence we have: \[\lim_{t \rightarrow \infty, N \rightarrow \infty} B_{N,t} = \mathbb{N}\] (Here we have used that there are infinitely many primes.) Now let us put \(C_N := B_{N,\pi(N)}\). Then one empirical observation, which I was not able to prove directly, is: \[\lim_{N \rightarrow \infty} \frac{1}{|C_N|} \sum_{n \in C_N} \lambda(n) =^? 0\] which reminds a little bit on the prime number theorem where \(C_N:=\{1,\cdots,N\}\).